The spatial distribution of the COVID-19 infection in China cannot be explained solely by geographical distance and regulatory stringency. In this research we investigate how meteorological conditions and air pollution, as concurring factors, impact COVID-19 transmission, using data on new confirmed cases from 219 prefecture cities from January 24 to February 29, 2020. Results revealed a kind of nonlinear dose-response relationship between temperature and coronavirus transmission. We also found that air pollution indicators are positively correlated with new confirmed cases, and the coronavirus further spreads by 5–7% as the AQI increases by 10 units. Further analysis based on regional divisions revealed that in northern China the negative effects of rising temperature on COVID-19 is counteracted by aggravated air pollution. In the southern cities, the ambient temperature and air pollution have a negative interactive effect on COVID-19 transmission, implying that rising temperature restrains the facilitating effects of air pollution and that they jointly lead to a decrease in new confirmed cases. These results provide implications for the control and prevention of this disease and for the anticipation of another possible pandemic.
Read full abstract