Machine Learning (ML) promises to enhance the efficacy of Android Malware Detection (AMD); however, ML models are vulnerable to realistic evasion attacks—crafting realizable Adversarial Examples (AEs) that satisfy Android malware domain constraints. To eliminate ML vulnerabilities, defenders aim to identify susceptible regions in the feature space where ML models are prone to deception. The primary approach to identifying vulnerable regions involves investigating realizable AEs, but generating these feasible apps poses a challenge. For instance, previous work has relied on generating either feature-space norm-bounded AEs or problem-space realizable AEs in adversarial hardening. The former is efficient but lacks full coverage of vulnerable regions while the latter can uncover these regions by satisfying domain constraints but is known to be time-consuming. To address these limitations, we propose an approach to facilitate the identification of vulnerable regions. Specifically, we introduce a new interpretation of Android domain constraints in the feature space, followed by a novel technique that learns them. Our empirical evaluations across various evasion attacks indicate effective detection of AEs using learned domain constraints, with an average of 89.6%. Furthermore, extensive experiments on different Android malware detectors demonstrate that utilizing our learned domain constraints in Adversarial Training (AT) outperforms other AT-based defenses that rely on norm-bounded AEs or state-of-the-art non-uniform perturbations. Finally, we show that retraining a malware detector with a wide variety of feature-space realizable AEs results in a 77.9% robustness improvement against realizable AEs generated by unknown problem-space transformations, with up to 70 × faster training than using problem-space realizable AEs.
Read full abstract