Management of ungulates is contested ground that lacks stakeholder agreement on desirable population sizes and management approaches. Unfortunately, we often miss information about extent of local impacts, for example on plant communities, to guide management decisions. Typical vegetation impact assessments like the woody browse index do not assess herbaceous plants, and differences in browse severity can be a function of deer density, deer legacy effects, localized deer feeding preferences and/or differences in plant community composition. Furthermore, in heavily affected areas, few remnant plants may remain for assessments. We used a sentinel approach to assess impact of white-tailed deer (Odocoileus virginianus), rodent attack, invasive earthworms and three invasive plants on survival and growth of 3-month-old red oak (Quercus rubra) individuals. We planted cohorts in 2010 and 2011 into deer accessible and fenced 30 × 30 m plots at 12 forests in New York State. We found year and site-specific effects with high deer herbivory of unprotected individuals (70-90 % of oaks browsed by deer versus none in fenced areas) far exceeding importance of rodent attacks. Oaks planted at low earthworm density sites were at significantly higher risk of being browsed compared with oaks at high earthworm density sites, but there was no detectable negative effect of invasive plants. Surviving oaks grew (~2 cm per year) under forest canopy cover, but only when fenced. We consider planting of oak or other woody or herbaceous sentinels to assess deer browse pressure a promising method to provide quantifiable evidence for deer impacts and to gauge success of different management techniques. The strength of this approach is that typical problems associated with multiple stressor impacts can be avoided, areas devoid of forest floor vegetation but under heavy deer browse pressure can still be assessed and the method can be implemented by non-specialists. Implementation of regular assessments can guide ungulate management based on meaningful evidence.
Read full abstract