Cover crops are used in cropping systems to enhance ecosystem services, such as soil resilience to erosion or microbial activity. Different cover crops are selected to steer specific processes, but whether cover crop mixtures have an added value over monocultures remains debated. Here, we investigated if cover crop mixtures accumulate soil microbiotas distinct from those of monocultures, potentially leading to more varied microbially-driven soil functions. We performed a field experiment at three locations in the Netherlands, each including nine cover crop monocultures, five- and eight-species mixtures, and a fallow control. After three months, we measured cover crop biomass and profiled soil bacterial, fungal, and arbuscular mycorrhizal fungal communities via amplicon sequencing. The different crop monocultures produced similar biomass across all three locations, and mixtures had average productivity compared to monocultures. The diversity and community structure of soil microbial communities was primarily determined by the geographical location, and then by cover crop treatment at each location. Although the cover crop species affected the soil microbiome differently, cover crop mixtures did neither increase microbial diversity nor the overall community differentiation compared to monocultures. Our results suggest that mixing cover crop species does not significantly influence microbially-driven soil functions, at least in short-term crop rotations.
Read full abstract