AbstractWeeds can be suppressed in the field by cover crop residues, extracts of which have been demonstrated to exert chemical inhibition of crop and weed germination and early growth in bioassays. In this study, two complementary bioassays were developed with soil and mulch material originating from a long‐term maize–cover crop experiment to determine the relative physical and chemical effect of rye cover crop residues on weed and maize germination and early growth. This was compared with the effect exerted by residue material from the natural vegetation that developed in the crop stubble during the winter before maize sowing. Germination percentage and early growth of maize and two maize weeds, Amaranthus retroflexus and Echinochloa crus‐galli, were assessed in a seed incubator in tilled (green manured) and nontilled (surface mulched) soil, with and without N fertilisation, at various dates after cover crop destruction. Responses were compared to those of the same species in a standard soil without mulch or with an inert poplar mulch. A second bioassay was set up in a glasshouse to determine the effect of different quantities of fresh residue material and additional N fertilisation on emergence speed and percentage and on plant vigour during the first 22 days after cover crop destruction. These results were compared with no‐mulch controls and poplar mulch controls. Results of these trials were compared with weed density and biomass that developed in the maize crop sown after cover crop destruction. Soil and mulch chemical and biological properties were determined for material collected in the field at different times after cover crop destruction. Chemical properties of the mulch differed only occasionally between the treatments, but variation in cover crop biomass production led to significantly different soil chemical properties. Although soil total phenolic acid content did not always correlate to weed and maize germination and early growth inhibition, soil microbial activity did. In suboptimal conditions, as is often the case in the field, plant residue material exerted both a physical and a chemical effect on maize and weed emergence and early growth. Nitrogen fertilisation and application timing can give the maize crop a competitive advantage with respect to the weeds, but the final response and the practical consequences depended largely on the weed species involved.