Exposure to air pollution has been associated with increased dementia. However, it remains unknown what specific metabolic mechanisms play a role in this relationship. We included 192,300 dementia-free participants from the UK Biobank cohort study. Annual concentrations of air pollution were assessed based on the residential address. Elastic net regression was performed to identify air pollution-related metabolites, and metabolic score was constructed. Cox regression models and covariate balancing generalized propensity scores (CBGPS) regression models were conducted to explore the longitudinal associations between air pollution/metabolic signatures and dementia risk. The underlying mechanisms between air pollution and dementia driven by metabolic signature or specific metabolites were also investigated. A total of 2,592 incident dementia cases were documented. We identified the metabolite profiles in response to air pollution exposure, including 87 metabolites for PM2.5, 65 metabolites for PM10, 76 metabolites for NO2, and 71 metabolites for NOx. The air pollution-related metabolic signatures were associated with increased risk of dementia, with hazard ratios (HR) of 1.17 (95% CI: 1.12, 1.22), 1.06 (95% CI: 1.02, 1.11), 1.16 (95% CI: 1.10, 1.21), and 1.17 (95% CI: 1.12, 1.22) for PM2.5, PM10, NO2 and NOx, respectively. The associations persisted using causal models. Metabolic signatures mediated the associations between air pollution exposure and dementia risk, with mediation proportions ranging from 6.57% to 12.71%. Additionally, we observed that a metabolite known as free cholesterol in medium VLDL (M-VLDL-FC) played a crucial mediating role. Our study provides novel insights into the metabolic mechanisms linking air pollution exposure to dementia risk.
Read full abstract