Most hypotheses to explain nonrandom mating patterns invoke mate choice, particularly in species that display elaborate ornaments. However, conflicting selection pressures on traits can result in functional constraints that can also cause nonrandom mating patterns. We tested for functional load-lifting constraints during aerial copulation in Rhamphomyia longicauda, a species of dance fly that displays multiple extravagant female-specific ornaments that are unusual among sexual traits because they are under stabilizing selection. R.longicauda males provide females with a nuptial gift before engaging in aerial mating, and the male bears the entire weight of the female and nuptial gift for the duration of copulation. In theory, a male's ability to carry females and nuptial gifts could constrain pairing opportunities for the heaviest females, as reported for nonornamented dance flies. In concert with directional preferences for large females with mature eggs, such a load-lifting constraint could produce the stabilizing selection on female size previously observed in this species. We therefore tested whether wild-caught male R.longicauda collected during copulation were experiencing load-lift limitations by comparing the mass carried by males during copulation with the male's wing loading traits. We also performed permutation tests to determine whether the loads carried by males during copulation were lighter than expected. We found that heavier males are more often found mating with heavier females suggesting that whereas R.longicauda males do not experience a load-lift constraint, there is a strong relationship of assortative mating by mass. We suggest that active male mate choice for intermediately adorned females is more likely to be causing the nonrandom mating patterns observed in R.longicauda.