This study was conducted to describe a high school engineering curriculum, identify teaching strategies used to increase math and science literacy, and discover challenges and constraints that occur during its development and delivery, as well as what strategies are used to overcome these obstacles. Semi-structured interviews were conducted with the engineering instructor. In addition, students were observed and curriculum documents, teacher lesson plans, and teacher resources were examined. Concepts created the platform for delivery, curricular trial and error was at work, science and engineering competitions were leveraged as a basis for learning activities, and project based learning and teaching was critical. There was a clear emphasis on creative thought and work. Assessment of student learning was dubious and elusive and stakeholders tended to be uneasy with this new pedegogy. Financial and instructional support through business partnership and administrative support were found to be critical strategies used to overcome obsticles identified. David Stricker is an Assistant Professor at University of Wisconsin-Stout. He can be reached at strickerd@uwstout.edu 64 JOURNAL OF STEM TEACHER EDUCATION A Case Study: Teaching Engineering Concepts in Science The focus on improving science, technology, engineering, and mathematics (STEM) education for America’s children can be traced back to the days of Sputnik and beyond. However, compared with advancements then, it has been argued that today technological development and industrial growth are increasing at an exponential rate with expanding global application (Brophy, Klein, Portsmore, Rogers, 2008). Consequently, amid concerns that the United States may not be able to compete with other nations in the future due to insufficient investment today in science and technology research and STEM education, funding initiatives such as the American Recovery and Reinvestment Act (U.S. Department of Education, The American Recovery and Reinvestment Act of 2009: Saving and Creating Jobs and Reforming Education) and “Race to the Top” competitive grants have been enacted in 2009 in an effort to offer substantial federal support for such initiatives (U.S. Department of Education. President Obama, U.S. Secretary of Education Duncan Announce National Competition to Advance School Reform). The support structure for STEM education does not end with tax dollars. Large private companies such as Time Warner Cable have committed $100 million in media time, and the MacArthur Foundation is supporting “National Lab Day” that will include, among other initiatives, a year-long effort to expand hands-on learning methods throughout the country. Specifically, within the STEM focus, engineering education supports the attainment of a wide range of knowledge and skills associated with comprehending and using STEM knowledge to achieve real world problem solving through design, troubleshooting, and analysis activities (Brophy, et. al., 2008). The arguments for including A Case Study: Teaching Engineering Concepts 65 engineering education into the general education curriculum are well established. Some are motivated by concerns regarding the quantity, quality, and diversity of future engineering talent (American Society for Engineering Education, 1987; National Academy of Engineering, 2005; National Research Council, 1996; International Technology Education Association, 2002) and others by the basic need for all students, in their pursuit of preparing for life, work, and citizenship in a society inundated with technology, to possess a fundamental understanding of the nature of engineering (Welty, 2008). In an attempt to address this issue, there have been a number of curricula designed to infuse engineering content into technology education courses (Dearing & Daugherty, 2004). Each of these programs proposes teaching engineering concepts or engineering design in technology education as a vehicle to address the standards for technological literacy (International Technology Education Association, 2000/2002). Similarly, the National Academy of Engineering (NAE) publication Technically Speaking (Pearson and Young, 2002) emphasizes the need for all people to become technologically literate to function in the modern world. However, despite this clear need, within the technology education profession itself, the appropriate engineering curriculum required for implementation, particularly at the high school level, remains unclear. Indeed, engineering curricula exist that have been designed for implemetation, not in technology education, but rather in math and science classrooms. As a result of the choices available to teachers and school administrators, the extent to which the most effective way of delivereing engineering content to high school students remains unclear. 66 JOURNAL OF STEM TEACHER EDUCATION
Read full abstract