In an asymmetric Au cubic trimer, influence of the rotation angle (θ) and side length (w) on both plasmonic coupling features and corresponding enhancement factor of hyper-Raman scattering (HRS) process have been investigated comprehensively under the illumination of a longitudinally polarized light. The finite-difference time-domain (FDTD) electrodynamic simulation tool has been employed to calculate the optical cross-section and associated nearfield intensity of the irradiated coupled resonators. As θ increases, the polarization state that dominates the coupling phenomenon is gradually switched from facing sides into facing edges which results in (1) a dramatic change in the spectral response of the trimer and (2) a significant improvement in the nearfield intensity that is directly related to the improvement of HRS signal. Breaking size symmetry of the cubic trimer provides a novel approach to reach the desired spectral response that permits such trimer to be used as an active substrate for HRS procedures. After optimizing both the orientation angle and size of the interacting plasmonic characters forming of the trimer, the enhancement factor of HRS process can reach a value never reported before as high as 1 × 1021.
Read full abstract