Photopolymerization-based 3D printing has emerged as a key technology in hydrogel manufacturing, broadening the attributes of hydrogels and extending their applications into diverse engineering fields. However, the mechanical properties of hydrogels dramatically impact the functionality and quality in practice. It is necessary to develop an appropriate theoretical model to predict the evolution of the mechanical properties of hydrogels during the photopolymerization process. In this work, systematical experiments were performed to investigate mechanical properties of PAAm hydrogel under different photopolymerization condition. The results reveal a noticeable increasement in both elastic and viscous behavior of hydrogel with the advancement of polymerization. To fully capture the experimental observations, we developed a coupled photo-chemo-mechanical theoretical framework that integrates reaction kinetics with a physically-based viscoelastic constitutive model. Within this model, the degree of conversion serves as an internal variable, which related to microscopic structures such as correlation length, and tube diameter. The developed model exhibits remarkable prediction ability for hydrogels with various degree of polymerization. The current work paves a potentially new avenue for understanding the evolution of mechanical properties in photopolymerized hydrogels, providing theoretical guidance for the manufacturing of hydrogels through photopolymerization-based 3D printing.