AbstractWe present a 3D metal printing showerhead mixer to blend effectively two reagent streams into a confined mixing volume. Each stream is predistributed to multiple channels to increase the contact area in the mixing zone, which enables high mixing performance with smaller pressure drop. The showerhead mixer shows excellent mixing performance owing to its ability to intersperse rapidly the two streams as characterized by the diazo coupling reactions and computational fluid dynamics (CFD) simulations. Experimental results demonstrate superior performance of the showerhead mixer compared to two common commercial micro T‐mixers, especially in low Reynolds number regime. CFD results are employed to (a) help understand the mixing mechanism, (b) reproduce the experimental observations, and (c) inform the design specifications for optimal performance. Good agreement between experiments and simulations is achieved. The final design includes multiple side‐fed inlets for improved mixing performance of the showerhead mixer, as suggested by the validated CFD models.