The presence or absence of lichens serves as an indicator of the condition of an ecosystem and the degree to which it is contaminated by various agents, such as agrochemicals and metals. Evaluating the use of lichens as bioindicators of agrochemical contamination could provide a more comprehensive perspective of current contamination levels. Monitoring was conducted over a 4-month period in two study areas: one was a well-conserved area contaminated by metals, and the other was an area surrounded by agricultural crops contaminated by agrochemicals. Data on the presence and abundance of lichens in each study area were recorded at 10 monitoring points, a procedure that was repeated 16 times (every 15days), and concentrations of heavy metals and "organophosphate" agrochemicals in the lichens collected were measured by means of Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) and Gas Chromatography (GC), respectively. Generalized linear mixed models were used to assess abundance and richness, while general linear mixed models were used to attain Shannon diversity and Simpson dominance indices. Moreover, a multivariate analysis was performed in order to compare the lichen communities in both areas. The results indicated differences between the area contaminated by metals and that contaminated by agrochemicals in terms of abundance and Simpson's dominance index, while no differences were found in the case of the richness and diversity models. The PERMANOVA analysis additionally showed differences between the lichen communities in the two areas. The results also demonstrated that Canoparmelia caroliniana bioaccumulated metals in both areas. The levels of barium, cadmium, and sodium were higher in the area contaminated by metals, while concentrations of chromium and copper were higher in the area contaminated by agrochemicals. Finally, the concentrations of agrochemicals were higher in the area contaminated by agrochemicals and included toxic substances such as Methylparathion and Parathion, which are prohibited in Ecuador. In conclusion, this research underscores the importance of lichens as precise indicators of environmental health and contamination by agrochemicals and metals.
Read full abstract