Oxygen-bearing platinum group minerals (O-bearing PGMs) are intergrown with base metal sulfides (BMS, e.g., pentlandite–[NiFe]9S8) within fractures in chromite grains from chromitite bodies on Ouen Island, New Caledonia. These PGMs are hosted in chlorite and serpentine, which formed during serpentinization of olivine and pyroxene. The O-bearing PGM grains are polygonal, show microfracturing (indicating volume loss), and contain Pt-Pd-rich sulfide remnants, suggesting pseudomorphic replacement of primary (magmatic) sulfides. They display chemical zonation, with Pt(-Pd-Ni-Fe) relict sulfide cores replaced by Pt-Fe-Ni oxidized alloy mantles and Pt-Cu-Fe(-Pd) alloy rims (tulameenite), indicating desulfurization. The core and mantle show a nanoporous structure, interpreted as the result of coupled dissolution–reprecipitation reactions between magmatic sulfides and low fO2–fS2 serpentinite-related fluids, probably formed during olivine transformation to serpentine + magnetite (early stages of serpentinization). This fluid infiltrated magmatic sulfides (PGE-rich and BMS), degrading them to secondary products and releasing S and metals that were accommodated in the mantle and rim of O-bearing PGMs. Upon olivine exhaustion, an increase in fO2 might have stabilized Pt-Fe-O compounds (likely Pt0/Pt-Fe + Fe oxyhydroxides) alongside Ni-Fe alloys. Our results show that post-magmatic desulfurization of primary sulfides produces complex nano-scale intergrowths, mainly driven by changes in the fluid’s physicochemical properties during serpentinization.
Read full abstract