In this paper, we propose a collocation–based numerical scheme to obtain approximate solutions of coupled Burgers’ equations. The scheme employs collocation of modified cubic B-spline functions. We have used modified cubic B-spline functions for unknown dependent variables u, v, and their derivatives w.r.t. space variable x. Collocation forms of the partial differential equations result in systems of first–order ordinary differential equations (ODEs). In this scheme, we did not use any transformation or linearization method to handle nonlinearity. The obtained system of ODEs has been solved by strong stability preserving the Runge-Kutta method. The proposed scheme needs less storage space and execution time. The test problems considered in the literature have been discussed to demonstrate the strength and utility of the proposed scheme. The computed numerical solutions are in good agreement with the exact solutions and competent with those available in earlier studies. The scheme is simple as well as easy to implement. The scheme provides approximate solutions not only at the grid points, but also at any point in the solution range.