Continuous steering movement (CSM) is an essential component of the upper extremity (UE) task during vehicle driving, and could be a suitable candidate for multi-joint rehabilitation programs for patients with UE disabilities. This study aims to evaluate the UE muscle activation during CSM and how the rotating speed and direction affect CSM's kinematic and kinetic performance. Surface electromyography (EMG), hand contact information, and steering torque were measured under fast (180°/s) and slow (60°/s) constant-velocity CSM to reveal the activation of shoulder and elbow muscles, temporal characteristics, and force exertion during the stance and swing phases of a CSM cycle. Data from 24 normal young adults showed that shorter contact duration but higher force exertion occurred in the hand moving in an outward steering direction during only fast CSM in either the clockwise (CW) or counterclockwise (CCW) direction. During a steering cycle (either fast or slow speed), the triceps brachii, sternal part of the pectoralis major (PS), and posterior deltoid play major roles in generating steering torque in the CW direction of the CSM. In contrast, the PS, clavicular part of the pectoralis major (PC), and anterior deltoid (AD) largely contribute to torque generation during the CCW CSM. During the swing phase of CSM, AD, PC, and PS are the major muscles that move the hand for the next grasping of the steering wheel in all four conditions. Using the mean activation profiles of the major contributing muscles, the functional roles of these elbow and shoulder muscles were analyzed and are discussed herein. These findings help us to further understand the activation patterns of UE muscles and the kinematic and kinetic changes during two rotating directions and two speeds of CSM, and suggest important implications for future practice in clinical training.
Read full abstract