BackgroundFiber length is one of the primary quality parameters for the cotton industry when considering the textile performance and end-use quality of cotton. Currently, many decisions regarding cotton fiber length utilize the industry standard measurement device, i.e., the High Volume Instrument (HVI). However, it is documented that complete fiber length distributions hold more information than the currently reported HVI length parameters, i.e., upper half mean length (UHML) and uniformity index (UI). An alternative measurement device, the Advanced Fiber Information System (AFIS), is able to capture additional information about fiber length distribution. What is currently not known is how much additional information the AFIS length distribution holds.ResultsThe stability of differences in within-sample variation in fiber length captured by the AFIS length distribution by number characterizing differences between samples was deemed stable across the extended testing period. A diverse breeding population was evaluated and four significant sources of within sample variation in length were identified. A comparison of the ability between HVI length parameters and AFIS fiber length distribution to correctly categorize breeding lines to their family was performed. In all cases, the AFIS fiber length distribution more accurately identified germplasm families.ConclusionsThe long-term stability test of the AFIS fiber length distribution by number shows that the measurement is stable and can be used to assess differences across samples. However, more information about within-sample variation in fiber length than that can be captured by length parameters is needed to assess differences across samples in many applications. Four length parameters outperform two length parameters when trying to identify the familial background of the samples in this set. These parameters characterize distributional shape differences that are not captured by the standard AFIS length parameters, UQL and short fiber content by number (SFCn). These findings suggest that additional types of variation in cotton fiber length are not captured and are therefore not currently used in most cotton breeding programs.
Read full abstract