Planning for the future exploration of the solar system has involved the structuring of a series of missions that address major scientific objectives at a minimum runout cost for the entire endeavor. In many cases, however, the optimal structuring of a program that would minimize the runout cost would entail an unacceptable high annual funding. Our actual planning must consider the planning wedge imposed on the National Aeronautics and Space Administration. It is vital that a plan be structured that copes with the annual restraint. If we do not recognize this, our plan will not be realized and a queing problem will result, thus negating all of our planning efforts. This paper presents ideas as to how planetary initiatives can be structured, wherein the peak annual funding is minimized. One vital aspect in the plan is to have a transportation capability that can launch a mission in any planetary opportunity. Solar electric propulsion can provide this capability. Another cost reduction approach would be to structure a mission set in a time sequenced fashion that could utilize essentially the same spacecraft for the implementation of several missions. This opportunity does exist. A third technique would be to fulfill a scientific objective in several sequential missions rather than attempt to accomplish all of the objectives with one mission. This approach might be applied to a mission currently in the planning stage designated the Saturn Orbiter Dual Probe mission. The current concept involves the delivery of a Saturn probe, a Titan probe, and a Saturn Orbiter by a one Shuttle launch. In this case, the orbiter must serve as a relay station for both probes; map the magnetosphere of Saturn; conduct a survey of Saturn's major satellites; and perform the planetological observation of Saturn itself. This mission entails the development of a complex spacecraft that would be required to have a fairly long life due to the extended mission operations at the benefit of accomplishing the mission with one launch. An alternate approach would be to break the mission into two separate elements. We could, for example, launch a Saturn orbiter carrying a Saturn entry probe. After serving as a communications relay system for the Saturn probe, the orbiter would then be specialized to map the magnetosphere of Saturn. A second launch would involve the delivery of a Titan probe by another orbiter where after delivery the orbiter would conduct the planetological observation of Saturn and its satellites. For the split-launch option, the runout cost for the two missions would be greater than the single launch option. However, optimum structuring of the two missions could materially reduce the peak annual funding. This paper presents data on the estimated cost on a year by year basis of a mission set structured to minimize the runout cost with no concern as to the peak annual funding as compared to a mission set that would yield the same scientific objectives in a slightly longer time span wherein the annual peak funding would be minimized. The consequences of this revised plan are analyzed.