In this article, an integral reinforcement learning (IRL)-based event-triggered guarantee cost control (GCC) approach is proposed for stochastic systems which are modulated by randomly time-varying parameters. First, with the aid of the RL algorithm, the optimal GCC (OGCC) problem is converted into an optimal zero-sum game by solving a modified Hamilton-Jacobin-Isaac (HJI) equation of the auxiliary system. Moreover, in order to address the stochastic zero-sum game, we propose an on-policy IRL-based control approach involved by the multivariate probabilistic collocation method (MPCM), which can accurately predict the mean value of uncertain functions with randomly time-varying parameters. Furthermore, a novel GCC method, which combines the explorized IRL algorithm and MPCM, is designed to relax the restriction of knowing the system dynamics for the class of stochastic systems. On this foundation, for the purpose of reducing computation cost and avoiding the waste of resources, we propose an event-triggered GCC approach involved with explorized IRL and MPCM by utilizing critic-actor-disturbance neural networks (NNs). Meanwhile, the weight vectors of three NNs are updated simultaneously and aperiodically according to the designed triggering condition. The ultimate boundedness (UB) properties of the controlled systems have been proved by means of the Lyapunov theorem. Finally, the effectiveness of the developed GCC algorithms is illustrated via two simulation examples.
Read full abstract