Rotational degrees of freedom in Cosserat continua give rise to higher fracture modes. Three new fracture modes correspond to the cracks that are surfaces of discontinuities in the corresponding components of independent Cosserat rotations. We develop a generalisation of J- integral that includes these additional degrees of freedom. The obtained path-independent integrals are used to develop a criterion of crack propagation for a special type of failure in layered materials with sliding layers. This fracture propagates as a progressive bending failure of layers – a “bending crack that is, a crack that can be represented as a distribution of discontinuities in the layer bending. This situation is analysed using a 2D Cosserat continuum model. Semi-infinite bending crack normal to layering is considered. The moment stress concentrates along the line that is a continuation of the crack and has a singularity of the power − 1/4. A model of process zone is proposed for the case when the breakage of layers in the process of bending crack propagation is caused by a crack (microcrack in our description) growing across the layer adjacent to the crack tip. This growth is unstable (in the moment-controlled loading), which results in a typical descending branch of moment stress – rotation discontinuity relationship and hence in emergence of a Barenblatt-type process zone at the tip of the bending crack.
Read full abstract