According to present cosmological views the energy density of CMB (Cosmic Microwave Background) photons, freely propagating through the expanding cosmos, varies proportional to 1/S^4 with S being the scale factor of the universe. This behavior is expected, because General Theory of Relativity, in application to FLRW- (Friedmann-Lemaitre-Robertson-Walker) cosmological universes, leads to the conclusion that the photon wavelengths increase during their free passage through the spacetime metrics of the universe by the same factor as does the scale factor S. This appears to be a reasonable explanation for the presently observed Planckian CMB spectrum with its actual temperature of about 2.7 K, while at the time of its origin after the last scattering during the recombination phase its temperature should have been about 3000 K, at an epoch of about 380 ky after the Big Bang, when the scale of the universe S_r was smaller by roughly a factor of S/S_r = 1+z_r = 1100 compared to the present scale S = S_0 of the universe. In this paper we start from putting the question whether the scale-behavior of the CMB energy density that enters the energy-momentum tensor of the field equations describing the expanding universe is really falling off like 1/S^4 and, if in fact a deviation from a behavior according to 1/S^4 would occur, why do we nevertheless presently observe a CMB energy density which appears to be in accordance with such a 1/S^4-scaling? This question arises from another basic and fundamental question, namely: Can we really assume that the wavelength of the freely propagating photon during its travel all the way along its light geodetic is permanently affected by the expansion of the universe, i.e continuously recognizes the expansion of the cosmic scale S? With other words: Do freely propagating photons ........
Read full abstract