More than two years of COSMIC electron density profiles at low solar activities are collected to study the evolution of the Weddell Sea Anomaly (WSA), which appears as an evening enhancement in electron density during local summer. Observations show that the change in NmF2 (the F2 peak electron density) is associated with the change in hmF2 (the F2 peak height), while the latter is correlated closely with the components of the geomagnetic field. We find that (1) in the afternoon, hmF2 is more liable to rise drastically in regions with a larger ∣sin(2I)∣ value, which would occur early at certain declinations, eastward in the southern hemisphere and westward in the northern hemisphere; (2) subsequently, a larger increment of hmF2 is coincidentally followed by a stronger enhancement of NmF2 and the enhancement ends just around the local sunset; and (3) in midlatitudes, the evolution pattern of hmF2 in the evening of equinoxes and winter is similar to that in summer, albeit without a lasting NmF2 enhancement as that in summer. These features suggest that the NmF2 enhancement and the hmF2 increase could arise from the thermospheric wind effect, and solar photoionization plays a crucial role in the enhancement as well. The general midlatitude F2 layer enhancement in local summer evening is consistent with the WSA on the above features, indicating that the WSA is a manifestation, with a particular geometry of the magnetic field, of the evening enhancement induced by the winds.
Read full abstract