Human milk (HM) is considered the best source of infant nutrition with many benefits for the infant. However, pregnancy changes can lead to increased stress in some women, which might affect HM composition. Although studies have demonstrated a link between maternal psychopathology and child development, it remains unclear how maternal psychobiological changes can be intergenerationally transmitted. We aimed to investigate the associations of maternal stress, depressive symptoms, and anxiety symptoms with the HM microbiome; to analyze these parameters in relation to HM glucocorticoid concentrations; and to explore the influence of HM glucocorticoids on HM bacterial composition. One hundred women completed psychological questionnaires (e.g., EPDS, STAI, GAS) at 34-36 weeks' gestation and in the early postpartum period and provided saliva at 34-36 and 38 weeks' gestation. HM samples were collected in the early postpartum. Microbiota were analyzed using 16S rRNA amplicon sequencing. Birth anxiety was negatively correlated with Alphaproteobacteria (τ = -0.20, FDR = 0.01), whereas in the postpartum period, anxiety symptoms were negatively correlated with different taxa. The sum of postpartum-related symptoms was linked to lower Propionibacteriales. Salivary cortisol AUCg at 34-36 weeks was negatively correlated with Stenotrophomonas (τ = -0.24, FDR = 0.05), whereas HM cortisol was positively correlated with Streptococcus mitis (τ = 0.26, FDR = 0.03) and Gemella haemolysans (τ = 0.24, FDR = 0.02). No associations emerged between psychobiological parameters and HM glucocorticoids. Higher perinatal psychological symptoms and prenatal salivary cortisol AUCg were associated with lower relative abundances of different bacteria, whereas higher HM cortisol was linked to higher Gemella and Streptococcus. These findings suggest a negative association between high maternal psychobiological symptoms and relative abundances of the milk microbiota.
Read full abstract