The goal of this study was to determine the effects of applying random vs. constant constraint force to the non-paretic leg during walking on enhanced use of the paretic leg in individuals post-stroke, and examine the underlying brain mechanisms. Twelve individuals with chronic stroke were tested under two conditions while walking on a treadmill: random vs. constant magnitude of constraint force applied to the non-paretic leg during swing phase of gait using a custom designed robotic system. Leg kinematics, muscle activity of the paretic leg, and electroencephalography (EEG) were recorded during treadmill walking. Paretic step length and muscle activity of the paretic ankle plantarflexors significantly increased after walking with random and constant constraint forces. Cortico-cortical connectivity between motor cortices and cortico-muscular connectivity from the lesioned motor cortex to the paretic ankle plantarflexors significantly increased for the random force condition but not for the constant force condition. In addition, individuals post-stroke with greater baseline gait variability showed greater improvements in the paretic step length after walking with random force condition but not with the constant force condition. In conclusion, application of random constraint force to the non-paretic leg may enhance the use of the paretic leg during walking by facilitating cortical drive from the lesioned motor cortex to the paretic ankle plantarflexors. Results from this study may be used for the development of constraint induced locomotor intervention approaches aimed at improving locomotor function in individuals after stroke.