Abstract

In Alzheimer´s disease (AD), hyperphosphorylated tau spreads along the cerebral cortex in a stereotypical pattern that parallels cognitive deterioration. Tau seems to spread transsynaptically along cortico-cotical pathways that, according to synaptic tract-tracing studies in nonhuman primates, have specific laminar patterns related to the cortical type of the connected areas. This relation is described in the Structural Model. In the present article, we study the laminar distribution of hyperphosphorylated tau, labeled with the antibody AT8, along temporal cortical types in postmortem human brains with different AD stages to test the predictions of the Structural Model. Brains from donors without dementia had scant AT8-immunorreactive (AT8-ir) neurons in allo-, meso-, and isocortical types. In early AD stages, the mesocortical dysgranular type, including part of the transentorhinal cortex, had the highest AT8 immunostaining and AT8-ir neurons density. In advanced AD stages, AT8 immunostaining increased along the isocortical types until reaching the auditory koniocortex. Regarding laminar patterns, in early AD stages there were more AT8-ir neurons in supragranular layers in each de novo involved neocortical type; in advanced AD stages, AT8-ir neurons were equally distributed in supra- and infragranular layers. These AT8-ir laminar patterns are compatible with the predictions of the Structural Model. In summary, we show that hyperphosphorylated tau initially accumulates in allo-, meso-, and isocortical types, offer a proof of concept for the validity of the Structural Model to predict synaptic pathway organization in the human cerebral cortex, and highlight the relevance of nonhuman primate tract-tracing studies to understand human neuropathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call