Neurons become more vulnerable to stress factors with age, which leads to increased oxidative DNA damage, decreased activity of mitochondria and lysosomes, increased levels of p16, decreased LaminB1 proteins, and the depletion of the dendritic tree. These changes are exacerbated in vulnerable neuronal populations during the development of neurodegenerative diseases. Glu-Asp-Arg (EDR) and Lys-Glu-Asp (KED), and Ala-Glu-Asp-Gly (AEDG) peptides have previously demonstrated neuroprotective effects in various models of Alzheimer's disease. In this study, we investigated the influence of EDR, KED, and AEDG peptides on the aging of fibroblast-derived induced neurons. We used a new in vitro cellular model of human neuronal aging based on the transdifferentiation of aged dermal fibroblasts from elderly donors into induced cortical neurons. All peptides promote the arborization of the dendritic tree, increasing both the number of primary processes and the total length of dendrites. Tripeptides have no effect on the activity of mitochondria and lysosomes and the level of p16 protein in induced neurons. EDR peptide reduces oxidative DNA damage in induced neurons derived from elderly donor fibroblasts. Short peptides partially protect induced neurons from age-related changes and stimulate dendritogenesis in neurons. They can be recommended for use as neuroprotective agents.
Read full abstract