Life satisfaction is a component of subjective well-being that reflects a global judgement of the quality of life according to an individual's own needs and expectations. As a psychological construct, it has attracted attention due to its relationship to mental health, resilience to stress, and other factors. Neuroimaging studies have identified neurobiological correlates of life satisfaction; however, they are limited to functional connectivity and gray matter morphometry. We explored features of gray matter microstructure obtained through compartmental modeling of multi-shell diffusion MRI data, and we examined cortical microstructure in frontoinsular cortex in a cohort of 807 typical young adults scanned as part of the Human Connectome Project. Our experiments identified the orientation dispersion index (ODI), and analogously fractional anisotropy (FA), of frontoinsular cortex as a robust set of anatomically-specific lateralized diffusion MRI microstructure features that are linked to life satisfaction, independent of other demographic, socioeconomic, and behavioral factors. We further validated our findings in a secondary test-retest dataset and found high reliability of our imaging metrics and reproducibility of outcomes. In our analysis of twin and non-twin siblings, we found basic microstructure in frontoinsular cortex to be strongly genetically determined. We also found a more moderate but still very significant genetic role in determining microstructure as it relates to life satisfaction in frontoinsular cortex. Our findings suggest a potential linkage between well-being and microscopic features of frontoinsular cortex, which may reflect cellular morphology and architecture and may more broadly implicate the integrity of the homeostatic processing performed by frontoinsular cortex as an important component of an individual's judgements of life satisfaction.
Read full abstract