For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles.Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions.We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal–ventral, medial–lateral, and anterior–posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions.Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.