In the renal hypertrophy that occurs in diabetes mellitus, decreased proteolysis may lead to protein accumulation, but it is unclear which proteins are affected. Because the lysosomal proteolytic pathway of chaperone-mediated autophagy is suppressed by growth factors in cultured cells, we investigated whether the abundance of substrates of this pathway increase in diabetic hypertrophy. Rats with streptozotocin (STZ)-induced diabetes were pair-fed with vehicle-injected control rats. Proteolysis was measured as lysine release in renal cortical suspensions and protein synthesis as phenylalanine incorporation. Target proteins of chaperone-mediated autophagy were measured in cortical lysates and nuclear extracts by immunoblot analysis. Proteins that regulate chaperone-mediated autophagy [the lysosomal-associated membrane protein 2a (LAMP2a) or the heat shock cognate protein of 73 kD (hsc-73)] were measured in lysosomes isolated by density gradient centrifugation. Proteolysis decreased by 41% in diabetic rats; protein synthesis increased at 3 days, but returned to baseline by 7 days. The abundance of proteins containing that chaperone-mediated autophagy KFERQ signal motif increased 38% and individual KFERQ containing proteins [e.g., M2 pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pax2] were more abundant. LAMP2a and hsc73 decreased by 25% and 81%, respectively, in cortical lysosomes from diabetic vs. control rats. The decline in proteolysis in acute diabetes mellitus is associated with an increase in proteins degraded by chaperone-mediated autophagy and a decrease in proteins which regulate this pathway. This study provides the first evidence that reduced chaperone-mediated autophagy contributes to accumulation of specific proteins in diabetic-induced renal hypertrophy.
Read full abstract