Background:Hepatocellular carcinoma (HCC) is the cause of an overwhelming number of cancer-related deaths across the world. Developing precise and noninvasive biomarkers is critical for diagnosing HCC. Our research was designed to explore potentially useful biomarkers of host peripheral blood mononuclear cell (PBMC) in HCC by integrating comprehensive bioinformatic analysis.Methods:Gene expression data of PBMC in both healthy individuals and patients with HCC were extracted from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to annotate the function of DEGs. Protein-protein interaction analysis was performed to screen the hub genes from DEGs. cBioportal database analysis was performed to assess the prognostic significance of hub genes. The Cancer Cell Line Encyclopedia (CCLE) and The Human Protein Atlas (HPA) database analyses were performed to confirm the expression levels of the hub genes in HCC cells and tissue.Results:A total of 95 DEGs were screened. Results of the GO analysis revealed that DEGs were primarily involved in platelet degranulation, cytoplasm, and protein binding. Results of the KEGG analysis indicated that DEGs were primarily enriched in focal adhesion. Five genes, namely, myosin light chain kinase (MYLK), interleukin 1 beta (IL1B), phospholipase D1 (PLD1), cortactin (CTTN), and moesin (MSN), were identified as hub genes. A search in the CCLE and HPA database showed that the expression levels of these hub genes were remarkably increased in the HCC samples. Survival analysis revealed that the overexpression of MYLK, IL1B, and PLD1 may have a significant effect on HCC survival. The aberrant high expression levels of MYLK, IL1B, and PLD1 strongly indicated worse prognosis in patients with HCC.Conclusions:The identified hub genes may be closely linked with HCC tumorigenicity and may act as potentially useful biomarkers for the prognostic prediction of HCC in PBMC samples.
Read full abstract