Deep neural networks have shown remarkable performance in image classification. However, their performance significantly deteriorates with corrupted input data. Domain generalization methods have been proposed to train robust models against out-of-distribution data. Data augmentation in the frequency domain is one of such approaches that enable a model to learn phase features to establish domain-invariant representations. This approach changes the amplitudes of the input data while preserving the phases. However, using fixed phases leads to susceptibility to phase fluctuations because amplitudes and phase fluctuations commonly occur in out-of-distribution. In this study, to address this problem, we introduce an approach using finite variation of the phases of input data rather than maintaining fixed phases. Based on the assumption that the degree of domain-invariant features varies for each phase, we propose a method to distinguish phases based on this degree. In addition, we propose a method called vital phase augmentation (VIPAug) that applies the variation to the phases differently according to the degree of domain-invariant features of given phases. The model depends more on the vital phases that contain more domain-invariant features for attaining robustness to amplitude and phase fluctuations. We present experimental evaluations of our proposed approach, which exhibited improved performance for both clean and corrupted data. VIPAug achieved SOTA performance on the benchmark CIFAR-10 and CIFAR-100 datasets, as well as near-SOTA performance on the ImageNet-100 and ImageNet datasets. Our code is available at https://github.com/excitedkid/vipaug.