Making use of the duality transformation, we derive in the Londons' limit of the Abelian Higgs model string representation for the 't Hooft loop average defined on the string worldsheet, which yields the values of two coefficient functions parametrizing the bilocal correlator of the dual field strength tensors. The asymptotic behaviors of these functions agree with the ones obtained within the method of vacuum correlators in QCD in the lowest order of perturbation theory. We demonstrate that the bilocal approximation to the method of vacuum correlators is an exact result in the Londons' limit, i.e. all the higher cumulants in this limit vanish. We also show that at large distances, apart from the integration over metrics, the obtained string effective theory (which in this case reduces to the nonlinear massive axionic sigma model) coincides with the low energy limit of the dual version of 4D compact QED, the so-called universal confining string theory. We derive string tension of the Nambu–Goto term and the coupling constant of the rigidity term for the obtained string effective theory and demonstrate that the latter is always negative, which means the stability of strings, while the positiveness of the former is confirmed by the present lattice data. These data enable us to find the Higgs boson charge and the vacuum expectation value of the Higgs field, which well-described QCD. We also study dynamics of the weight factor of the obtained string representation for the 't Hooft average in the loop space. In conclusion, we obtain string representation for the partition function of the correlators of an arbitrary number of Higgs currents, by virtue of which we rederive the structure of the bilocal correlator of the dual field strength tensors, which yields the surface term in the string effective action.
Read full abstract