When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equationsat one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension d_{c}=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>d_{c}. The numerical data fully confirm our theoretical results.