Abstract

Tensor-network methods are used to perform a comparative study of the two-dimensional classical Heisenberg and RP^{2} models. We demonstrate that uniform matrix product states (MPSs) with explicit SO(3) symmetry can probe correlation lengths up to O(10^{3}) sites accurately, and we study the scaling of entanglement entropy and universal features of MPS entanglement spectra. For the Heisenberg model, we find no signs of a finite-temperature phase transition, supporting the scenario of asymptotic freedom. For the RP^{2} model we observe an abrupt onset of scaling behavior, consistent with hints of a finite-temperature phase transition reported in previous studies. A careful analysis of the softening of the correlation length divergence, the scaling of the entanglement entropy, and the MPS entanglement spectra shows that our results are inconsistent with true criticality, but are rather in agreement with the scenario of a crossover to a pseudocritical region which exhibits strong signatures of nematic quasi-long-range order at length scales below the true correlation length. Our results reveal a fundamental difference in scaling behavior between the Heisenberg and RP^{2} models: Whereas the emergence of scaling in the former shifts to zero temperature if the bond dimension is increased, it occurs at a finite bond-dimension independent crossover temperature in the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.