Spectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized. We find that the generated photon pairs can feature both positive spectral correlations, decorrelation, or negative correlations at the same time as polarization entanglement with a high fidelity of 0.97 (no background subtraction) with the expected Bell state.
Read full abstract