Building type information is widely used in various fields, such as disaster management, urbanization studies, and population modelling. Few studies have been conducted on fine-grained building classification in rural areas using China’s Gaofen-7 (GF-7) high-resolution stereo mapping satellite data. In this study, we employed a two-stage method combining supervised classification and unsupervised clustering to classify buildings in the rural area of Pingquan, northern China, based on building footprints, building heights, and multispectral information extracted from GF-7 data. In the supervised classification stage, we compared different classification models, including Extreme Gradient Boosting (XGBoost) and Random Forest classifiers. The best-performing XGBoost model achieved an overall roof type classification accuracy of 88.89%. Additionally, we proposed a template-based building height correction method for pitched roof buildings, which combined geometric features of the building footprint, street view photos, and height information extracted from the GF-7 stereo image. This method reduced the RMSE of the pitched roof building heights from 2.28 m to 1.20 m. In the cluster analysis stage, buildings with different roof types were further classified in the color and shape feature spaces and combined with the building height information to produce fine-grained building type codes. The results of the roof type classification and fine-grained building classification reveal the physical and geometric characteristics of buildings and the spatial distribution of different building types in the study area. The building classification method proposed in this study has broad application prospects for disaster management in rural areas.
Read full abstract