The effectiveness of coronary computed tomography (CT) angiography in assessing stent restenosis is hindered by heavy metal artifacts. This study aimed to evaluate the image quality of monoenergetic reconstructions and iodine density map for coronary stent imaging using an 8-cm dual-layer detector spectral CT. In this study, 8 stents with a diameter <3 mm (group A) and 10 with a diameter ≥3 mm (group B) were placed in plastic tubes filled with iodinated contrast media and scanned. The internal diameter of the prepared stents was then measured by intravascular ultrasound. The reconstructed images included iodine density maps, conventional images, and different energy levels. The visualization of the stent lumen and stent structure was subjectively assessed using a 4-point Likert scale. The objective evaluation was performed using the in-stent lumen signal-to-noise ratio (SNRis), non-stent lumen SNR (SNRns), internal diameter difference (IDD), and blooming artifact index (BAI). The Friedman test and analysis of variance were used for multiple comparisons. For lumen visualization, the optimal monoenergetic images received the highest score for both group A (2.56±0.51) and group B (3.1±0.55). Multiple comparisons showed that there were significant differences between the optimal monoenergetic images and iodine density maps. However, for stent structure, iodine density maps received the highest score for group A (3.0±0.52) and group B (3.8±0.41). For quantitative assessment, the optimal monoenergetic images had the highest SNRis and SNRns, while the iodine density maps had the lowest SNRis and SNRns. For IDD and BAI, the iodine density maps yielded the smallest value. The monoenergetic images on the second-generation dual-layer detector CT provide better visualization of the lumen and higher SNR. However, iodine density maps are superior for evaluating stent structure and IDD and BAI compared to monoenergetic and conventional reconstructions.
Read full abstract