Background: Fibroblast activation protein (FAP) is a cell surface glycoprotein expressed by myofibroblasts in areas of active tissue remodeling. It plays a potentially important role in cardiac remodeling, atherosclerotic plaque formation, and plaque rupture. Given the distinct pathophysiology and morphology of different forms of atherosclerosis, we analyzed FAP expression in human coronary vessels with no coronary artery disease, atherosclerotic plaques at different levels of progression, and other distinct forms of coronary disease in post bypass vein grafting and cardiac allograft vasculopathy after a heart transplant. Methods: Immunohistochemical staining with monoclonal F19 mouse anti-human FAP antibody was performed to identify FAP in human atherosclerotic plaques, coronary bypass atherosclerosis, and post-transplant arteriosclerosis. The presence and distribution of FAP in different types and stages of human atherosclerosis were compared. Results: There was no FAP staining in patients with no significant coronary disease. All different types of human atherosclerotic lesioning lesions showed the presence of FAP expression, with different staining patterns in advanced atherosclerotic plaque, vein graft atherosclerosis lesions, and arteriosclerosis after a heart transplant. Conclusions: These data suggest that FAP may be a potential diagnostic marker and target for interventions, not only in coronary atherosclerotic plaque, but also in other forms of coronary disease, which have distinct pathophysiologies and currently limited treatment options.
Read full abstract