The invertibility of convolution type operators on unions of intervals is studied. Sufficient conditions of invertibility for some classes of these operators are established. Solvability results forn-term corona problems are obtained using two different approaches: one involving reduction ton−1 Riemann-Hilbert problems in two variables and another involving reduction to two-term corona problems. The invertibility of the convolution operators on a union of intervals is also related to the invertibility of associated convolution operators on single intervals. Formulas for the inverse operators are given.
Read full abstract