In order to make up the shortcomings of some existing ship target detection algorithms for high-resolution synthetic aperture radar (SAR) images, a ship target detection algorithm based on information theory and Harris corner detection for SAR images is proposed in this paper. Firstly, the SAR image is pretreated, and next, it is divided into superpixel patches by using the improved simple linear iterative clustering (SLIC) superpixel generation algorithm. Then, the self-information value of the superpixel patches is calculated, and the threshold T1 is set to select the candidate superpixel patches. And then, the extended neighborhood weighted information entropy growth rate threshold T2 is set to eliminate the false alarm candidate superpixel patches. Finally, the Harris corner detection algorithm is used to process the detection result and the number of the corner threshold T3 is set to filter out the false alarm patches, and the final SAR image target detection result is obtained. The effectiveness and superiority of the proposed algorithm are verified by comparing the proposed method with the results of constant false alarm rate (CFAR) detection algorithm combined with morphological processing algorithm and other ship target detection algorithms.
Read full abstract