In the presence of a sharp corner in the boundary of the entanglement region, the entanglement entropy (EE) and Rényi entropies for 3d CFTs have a logarithmic term whose coefficient, the corner function, is scheme-independent. In the limit where the corner becomes smooth, the corner function vanishes quadratically with coefficient σ for the EE and σn for the Rényi entropies. For a free real scalar and a free Dirac fermion, we evaluate analytically the integral expressions of Casini, Huerta, and Leitao to derive exact results for σ and σn for all n=2,3,… . The results for σ agree with a recent universality conjecture of Bueno, Myers, and Witczak-Krempa that σ/CT=π2/24 in all 3d CFTs, where CT is the central charge. For the Rényi entropies, the ratios σn/CT do not indicate similar universality. However, in the limit n→∞, the asymptotic values satisfy a simple relationship and equal 1/(4π2) times the asymptotic values of the free energy of free scalars/fermions on the n-covered 3-sphere.
Read full abstract