ABSTRACT Purpose To provide scientific data for clinical practice in making strategies for accelerating corneal endothelial wound healing, we investigated the impact of UVA on the corneal endothelial wound healing process and the underlying mechanism using an in vitro cell model. Materials and methods An in vitro cell model for corneal endothelial wound healing was established by scratching the in vitro cultured human corneal endothelial cell (HCEnC) confluent layer. Then, we investigated the impacts of UVA irradiation and Ascorbic acid-2-phosphate (Asc-2p) on the wound healing process of the in vitro HCEnC model by examining wound-healing index, F-actin+ rate, Ki-67+ rate, and ROS production. Results After scratching, the Ki-67+ and F-actin+ HCEnCs occupied the scratching gap. Furthermore, the F-actin+ rates were significantly higher than Ki-67+ rates in the wound closure area. After irradiated with UVA, the wound-healing indexes, Ki-67+ rates and F-actin+ rates of the wound-healing model significantly reduced, whereas the ROS production significantly increased in a dose-dependent manner. Pretreatment with Asc-2p significantly reduced the ROS production as well as increased the wound-healing indexes, Ki-67+rates and F-actin+ rates of the UVA irradiated wound-healing model. Conclusion The migration of HCEnC plays a major role in the wound healing process of the established cell model, which is like the wound healing process in vivo. UVA decreases the wound closure of the in vitro HCEnC model dose-dependently, while antioxidant Asc-2p can attenuate the damage to UVA to HCEnCs probably via reducing ROS to improve their migration.
Read full abstract