Iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) are essential micronutrients that are necessary for plant growth and development, but can be toxic at supra-optimal levels. Plants have evolved a complex homeostasis network that includes uptake, transport, and storage of these metals. It was shown that the transcription factor (TF) complex OsbHLH156-OsIRO2 is activated under Fe deficient conditions and acts as a central regulator on Strategy II Fe acquisition. In this study, the role of the TF complex on Mn, Cu, and Zn uptake was evaluated. While Fe deficiency led to significant increases in shoot Mn, Cu, and Zn concentrations, the increases of these divalent metal concentrations were significantly suppressed in osbhlh156 and osiro2 mutants, suggesting that the TF complex plays roles on Mn, Cu, and Zn uptake and transport. An RNA-sequencing assay showed that the genes associated with Mn, Cu, and Zn uptake and transport were significantly suppressed in the osbhlh156 and osiro2 mutants. Transcriptional activation assays demonstrated that the TF complex could directly bind to the promoters of OsIRT1, OsYSL15, OsNRAMP6, OsHMA2, OsCOPT1/7, and OsZIP5/9/10, and activate their expression. In addition, the TF complex is required to activate the expression of nicotianamine (NA) and 2'-deoxymugineic acid (DMA) synthesis genes, which in turn facilitate the uptake and transport of Mn, Cu, and Zn. Furthermore, OsbHLH156 and OsIRO2 promote Cu accumulation to partially restore the Fe-deficiency symptoms. Taken together, OsbHLH156 and OsIRO2 TF function as core regulators not only in Fe homeostasis, but also in Mn, Cu, and Zn accumulation.
Read full abstract