Phenol-extractable polysaccharides firmly associated with the outer membrane of the gliding bacterium Cytophaga johnsonae could be resolved by gel filtration in sodium dodecyl sulfate (SDS) or by SDS-polyacrylamide gel electrophoresis into a high-molecular-weight (H) fraction (excluded by Sephadex G-200) and a low-molecular-weight (L) fraction. Fraction L was rich in components typical of lipid A and the core region of lipopolysaccharide (P, 3-hydroxy fatty acids, and 2-keto-3-deoxyoctonate) and evidently was a lipopolysaccharide with a limited number of distal, repeating polysaccharide units, as judged by SDS-polyacrylamide gel electrophoresis. In relation to total carbohydrate, the H fraction was rich in amino sugar but poor in (possibly devoid of) the lipid A and core components. Two nongliding mutants were highly deficient in the H fraction; one of these was deficient in sulfonolipid but could be cured by provision of a specific sulfonolipid precursor, a process that also resulted in the return of both the H fraction and gliding, as well as the ability to move polystyrene latex spheres over the cell surface. Hence, the polysaccharide may be the component that is directly involved in motility, and the presence of sulfonolipids in the outer membrane is necessary for the synthesis or accumulation of the polysaccharide. This conclusion was reinforced by the fact that the second nongliding, polysaccharide-deficient mutant had a normal sulfonolipid content.
Read full abstract