Sketches play a fundamental role in the design disciplines, serving as crucial representations for ideation, problem-solving, and communication. In the realm of architecture, sketches encapsulate the evolution of ideas from conceptualization to construction. Hand-drawn sketches, characterized by their open-ended, ambiguous nature and rapid production, stand out as indispensable tools in bridging the gap between abstract concepts and tangible designs, guiding the progression from early design stages to final product realization. However, despite their significant potential and pivotal role in the design process, hand sketches have often been overlooked and swiftly abandoned in the ongoing discourse surrounding traditional versus digital design methodologies, particularly with the widespread integration of computer technologies. This study endeavors to unlock the wealth of information embedded within hand sketches, spanning from initial design concepts to intricate manufacturing details, through the utilization of a hybrid digital form-finding tool. By employing swarm algorithms in the quest for form, it is anticipated that the boundaries of conceptual ideas delineated by hand sketches will be expanded. This is facilitated by an algorithm developed in Processing using the Java coding language, complemented by an intuitive interface. The research journey commences with a comprehensive literature review encompassing biomimetics, sketching techniques, and tools for transitioning hand sketches into digital realms. Subsequently, a thorough elucidation of the algorithm, crafted within the Processing environment, is provided.The efficacy of the tool is assessed through experimentation involving adjustments of various parameters on identical sketches, as well as application to seven architectural sketches representing built designs, with subsequent interpretation of the outcomes. It is posited that the adaptability of the algorithm's core logic, coupled with the development-friendly environment of Processing, holds immense potential for empowering designers to steer sketches in desired directions through tailored enhancements.