Microbial activity in the gut of the detrivore irregular sea urchin Echinocardium cordatum (Pennant) was studied by measurements of oxygen profiles, fermentation end products, C/N ratios, pH and concentrations of sulphide and sulphate in the gut segments, including the nodules of the intestinal caecum. The highest oxygen flux and consumption, and highest concentrations of short-chained fatty acids, and the lowest pH values occurred in the anterior stomach segments, including the anterior caecum. The C/N ratios indicate synthesis of microbial biomass in the caeca. The concentration of sulphate was high in the anterior stomach segments, whereas sulphide was only detectable in the nodules of the intestinal caecum. The anterior and intestinal caeca were the major sites for microbial activity, and oxidation of acetate and propionate produced in the two caeca corresponded to at least 9% of the total respiration of the sea urchin. Microbial fermentation, especially in the anterior caecum, seems to be important for the metabolism of E. cordatum, allowing the sea urchin to utilise refractile carbohydrates. The functions of the intestinal caecum are probably both residual fermentation and oxidation of accumulated sulphide.