Motor neuron diseases such as spinal cord injuries and amyotrophic lateral sclerosis are known as the most common disorders worldwide. Using stem cells (e.g., human umbilical cord blood mesenchymal stem cells) is currently a potent medical approach for modulating the impact of neural damages and regeneration of spinal cord injuries. MicroRNAs (miRNA) are taken into account as principal regulators during differentiation. The miRNAs play a significant role in stem cell self-renewal and fate determination. There are few studies on how miRNAs regulate neural differentiation in stem cells. The purpose of this study is to explore miRNA profiles of CB-MSCs during differentiation into motor neuron-like cells. Human CB-MSCs were isolated and characterized using flow cytometry. Cell differentiation has been induced by combining retinoic acid (RA) and sonic hedgehog (Shh) in a two-step protocol for 14 days. Then, cell differentiation was confirmed by immunocytochemistry and flow cytometry. The miRNA was analyzed using Illumina/Solexa sequencing platform. In this regard, three libraries were prepared to investigate the effect of these two biological morphogens on the miRNA profile of the differentiating cells. These libraries were Control (non-treated CB-MSCs), Test 1 (RA + /Shh +), and Test 2 (RA-/Shh-). Quantitative RT-PCR was employed to verify miRNA expression. CB-MSCs were spindle-shaped in morphology, and they did not express hematopoietic markers. After differentiation, the cells expressed motor neuron markers (i.e., Islet-1, SMI-32, and ChAT) at the protein level after 14 days. The analysis of miRNA sequencing demonstrated a significant up-regulation of miR-9-5p and miR-324-5p in Test 1 (RA + /Shh +). Also, there is a considerable down-regulation of mir-137 and let-7b in Test 2 (RA-/Shh-). These results have been obtained by comparing them with the Control library. Indeed, they were responsible for neuron and motor neuron differentiation and suppression of proliferation in neural progenitor cells. Furthermore, significant up-regulation was detected in some novel microRNAs involved in cholinergic, JAK-STAT, and Hedgehog and MAPK signaling pathways. CB-MSCs are potent to express motor neuron markers. This procedure has been performed by developing a two-week protocol and employing Shh and RA. The miRNA profile analysis showed a significant up-regulation in the expression of some miRs involved in neuron differentiation and motor neuron maturation. MiR-9-5p and miR-324-5p were up-regulated at the early stage of differentiation. Also, miR-137 and miR-let-7b were downregulated in the absence of RA and Shh. Furthermore, several novel miRNAs involved in cholinergic, Hedgehog, MAPK, and JAK-STAT signaling pathways have been detected. However, further studies are still necessary to validate their functions during motor neuron generation and maturation.
Read full abstract