Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.
Read full abstract