Infection of human cells with oncogenic adenovirus type 12 (Ad12) induces four specific chromosome fragile sites. Remarkably, three of these sites appear to colocalize with tandem arrays of genes encoding small, abundant, ubiquitously expressed structural RNAs--the RNU1 locus encoding U1 small nuclear RNA (snRNA), the RNU2 locus encoding U2 snRNA, and the RN5S locus encoding 5S rRNA. Recently, an artificial tandem array of the natural 5.8-kb U2 repeat unit has been shown to generate a new Ad12-inducible fragile site (Y.-P. Li, R. Tomanin, J. R. Smiley, and S. Bacchetti, Mol. Cell. Biol. 13:6064-6070, 1993), demonstrating that the U2 repeat unit alone is sufficient for virally induced fragility. To identify elements within the U2 repeat unit that are required for virally induced fragility, we generated cell lines containing artificial tandem arrays of the entire 5.8-kb repeat unit, an 834-bp fragment spanning the U2 gene alone, or the same 834-bp fragment from which key U2 transcriptional regulatory elements had been deleted. The U2 snRNA coding regions within each artificial array were marked by an innocuous single base change (U to C at position 87) so that the relative expression of supernumerary and endogenous U2 genes could be monitored by a primer extension assay. We find that artificial arrays of both the 5.8- and the 0.8-kb U2 repeat units are fragile but that arrays lacking either the distal sequence element or both the distal and the proximal sequence elements of the promoter are not. Surprisingly, variations in repeat copy number and/or transcriptional activity of the artificial arrays do not appear to correlate with the degree of Ad12-inducible fragility. We conclude that U2 transcriptional regulatory elements are required for virally induced fragility but not necessarily U2 snRNA transcription per se.