Haematococcus pluvialis has been used to produce the ketocarotenoid antioxidant, astaxanthin. Currently, heterotrophic cultivation of H. pluvialis is limited by slow growth rates. This work aimed to address this challenge by exploring the mechanisms of acetate metabolism in Haematococcus. Chemical mutagenesis and screening identified H. pluvialis strain KREMS 23D-3 that achieved up to a 34.9% higher cell density than the wild type when grown heterotrophically on acetate. An integrative proteomics and phosphoproteomics approach was employed to quantify 4955 proteins and 5099 phosphorylation sites from 2505 phosphoproteins in the wild-type and mutant strains of H. pluvialis. Among them, 12 proteins were significantly upregulated and 22 significantly downregulated in the mutant while phosphoproteomic analysis identified 143 significantly upregulated phosphorylation sites on 106 proteins and 130 downregulated phosphorylation sites on 114 proteins. Upregulation of anaphase-promoting complex phosphoproteins and downregulation of a putative cell cycle division 20 phosphoprotein in the mutant suggests rapid mitotic progression, coinciding with higher cell division rates. Upregulated coproporphyrinogen oxidase and phosphorylated magnesium chelatase in the mutant demonstrated altered nitrogen partitioning toward chlorophyll biosynthesis. The large proportion of differentially expressed phosphoproteins suggests phosphorylation is a key regulator for protein expression and activity in Haematococcus. Taken together, this study reveals the regulation of interrelated acetate metabolic pathways in H. pluvialis and provides protein targets that may guide future strain engineering work.
Read full abstract