Abstract

Arbuscular mycorrhizal fungi (AMF) are important in the phytoremediation of cadmium (Cd). Improving photosynthesis under Cd stress helps to increase crop yields. However, the molecular regulatory mechanisms of AMF on photosynthetic processes in wheat (Triticum aestivum) under Cd stress remain unclear. This study utilized physiological and proteomic analyses to reveal the key processes and related genes of AMF that regulate photosynthesis under Cd stress. The results showed that AMF promoted the accumulation of Cd in the roots of wheat but significantly reduced the content of Cd in the shoots and grains. The photosynthetic rates, stomatal conductance, transpiration rates, chlorophyll content, and accumulation of carbohydrates under Cd stress were increased by AMF symbiosis. Proteomic analysis showed that AMF significantly induced the expression of two enzymes involved in the chlorophyll biosynthetic pathway (coproporphyrinogen oxidase and Mg-protoporphyrin IX chelatase), improved the expression of two proteins related to CO2 assimilation (ribulose-1,5-bisphosphate carboxylase and malic enzyme), and increased the expression of S-adenosylmethionine synthase, which positively regulates abiotic stress. Therefore, AMF may regulate photosynthesis under Cd stress by promoting chlorophyll biosynthesis, carbon assimilation, and S-adenosylmethionine metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call